Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 16 de 16
Filter
Add more filters










Publication year range
1.
J Food Prot ; 87(3): 100222, 2024 03.
Article in English | MEDLINE | ID: mdl-38218339

ABSTRACT

Thermal inactivation studies were undertaken on Listeria monocytogenes and Salmonella spp. inoculated on the surface of country ham. Hams (average = ca. 3.4 ± 0.5 kg each; average = ca. ≥18% shrinkage) were used as provided by the processor (i.e., "salted hams"), desalted in tap water (i.e., "desalted hams"), or dried for an additional period (i.e., "extra-dried hams"). Hams were surface inoculated (ca. 9.5 log CFU/ham) with a multistrain cocktail of L. monocytogenes or Salmonella spp. and cooked within a bag ina circulating water bath to an internal temperature of 130°F (54.4°C) instantaneous, 145°F (62.8°C) and held for 4 min, 153°F (67.2°C) and held for 34 s, or 160°F (71.1°C) instantaneous. Regardless of ham type, all four time and temperature combinations tested herein delivered a ≥6.7-log reduction of cells of L. monocytogenes or Salmonella spp. Differences in product pH, moisture content, or aw did not have an appreciable impact on the thermal inactivation of L. monocytogenes or Salmonella spp. on country ham. In addition, shelf-life studies were undertaken using slices of "salted" country ham that were surface inoculated (ca. 5.5 log CFU/slice) with a multistrain cocktail of L. monocytogenes or Staphylococcus aureus and then stored at 20°C. Levels of S. aureus increased by ca. ≤1.4 log CFU/slice during storage for 90 days, whereas levels of L. monocytogenes remained relatively unchanged (≤0.2 log CFU/slice increase). Our data validated that cooking parameters elaborated in the U.S. Department of Agriculture's Food Safety and Inspection Service Cooking Guideline for Meat and Poultry Products (Revised Appendix A) are sufficient to deliver significant reductions (ca. ≥6.8 log CFU/ham) in levels of L.monocytogenes and Salmonella spp. on country ham. In addition, in the event of postprocessing contamination, country ham may support the outgrowth of S. aureus or survival of L. monocytogenes during storage at 20°C for 90 days.


Subject(s)
Listeria monocytogenes , Meat Products , Food Handling , Staphylococcus aureus , Colony Count, Microbial , Cooking , Temperature , Salmonella , Water , Food Microbiology
2.
Foods ; 12(10)2023 May 11.
Article in English | MEDLINE | ID: mdl-37238772

ABSTRACT

Cells of Listeria monocytogenes, Salmonella spp., or Shiga toxin-producing Escherichia coli (STEC) were inoculated (ca. 4.0 log CFU/slice) onto slices (ca. 4 g each slice) of an all-beef soppressata (ca. pH 5.05 and aw 0.85). The storage of vacuum-sealed slices of inoculated soppressata at 4 °C or 20 °C for 90 days resulted in reductions of all three pathogens by ca. 2.2 to 3.1 or ca. ≥3.3 log CFU/slice, respectively. When pathogen levels decreased to below detection (≤1.18 log CFU/slice) by direct plating, it was possible to recover each of the target pathogens by enrichment, albeit more frequently from slices stored at 4 °C (p < 0.05) compared to 20 °C. In summary, the slices of the commercially produced beef soppressata selected for this study did not provide a favorable environment for either survival or outgrowth of surface-inoculated cells of L. monocytogenes, Salmonella spp., or STEC during storage.

3.
J Food Prot ; 86(1): 100019, 2023 01.
Article in English | MEDLINE | ID: mdl-36916599

ABSTRACT

Viability of cells of Listeria monocytogenes or Salmonella spp. was quantified on slices of a German-style bologna manufactured by a local butcher to contain no added antimicrobials or to include 0.9% or 1.3% of a blend of potassium acetate and sodium diacetate (K-Ace) or 2.5% of a blend of potassium lactate and sodium diacetate (K-Lac) as ingredients. After slicing (ca. 7.1 cm L by 6.7 cm W, ca. 0.5 cm thick, ca. 22.4 g each), a single slice of bologna was placed into a nylon-polyethylene bag and surface inoculated with 250 µL per side of a five-strain mixture of either cells of L. monocytogenes or Salmonella spp. to achieve an initial level of ca. 3.5-4.0 log CFU/slice. The packages were vacuum-sealed and then stored at 4 or 12°C for 90 and 30 days, respectively. Without antimicrobials added to the formulation, L. monocytogenes numbers increased by ca. 5.4 and 6.0 log CFU/slice at both 4 and 12°C during the entire 90- and 30-day storage period, respectively. Likewise, levels of Salmonella also increased by ca. 6.0 log CFU/slice at 12°C in the absence of added antimicrobials; however, levels of this pathogen decreased by ca. 1.7 log CFU/slice after 90 days at 4°C. With the inclusion of 0.9% or 1.3% K-Ace or 2.5% K-Lac in the bologna formulation, levels of L. monocytogenes decreased by ca. ≤0.7 log CFU/slice after 90 days at 4°C, whereas levels of Salmonella decreased by ca. 1.6-2.3 log CFU/slice. After 30 days at 12°C, levels of L. monocytogenes increased by ca. ≤3.4 log CFU/slice on product containing 0.9% K-Ace or 2.5% K-Lac but remained relatively unchanged on slices formulated with 1.3% K-Ace. For Salmonella, in the presence of 0.9% or 1.3% K-Ace or 2.5% K-Lac, pathogen levels decreased by ca. ≤0.7 log CFU/slice at 12°C after 30 days. Our data validate that the inclusion of K-Ace (0.9% or 1.3%) or K-Lac (2.5%) as ingredients is effective for controlling L. monocytogenes and Salmonella on slices of bologna during refrigerated storage.


Subject(s)
Anti-Infective Agents , Listeria monocytogenes , Meat Products , Food Preservation , Food Preservatives , Salts , Colony Count, Microbial , Food Microbiology , Temperature
4.
J Food Prot ; 85(5): 879-889, 2022 05 01.
Article in English | MEDLINE | ID: mdl-35294002

ABSTRACT

ABSTRACT: The primary objective of this study was to monitor viability of Shiga toxin-producing Escherichia coli (STEC), Salmonella spp., and Listeria monocytogenes during preparation and storage of fuet. Regarding methodology, coarse-ground pork (ca. 35% fat) was mixed with salt (2.5%), dextrose (0.3%), starter culture (ca. 7.0 log CFU/g), celery powder (0.5%), and ground black pepper (0.3%) and then separately inoculated with a multistrain cocktail (ca. 7.0 log CFU/g) of each pathogen. The batter was stuffed into a ca. 42-mm natural swine casing and fermented at 23 ± 2°C and ca. 95% ± 4% relative humidity to ≤pH 5.3 (≤48 h). Sausages were then dried at 12 ± 2°C and ca. 80% ± 4% relative humidity to a water activity (aw) of 0.89 (within 33 days) or aw 0.86 (within 60 days). A portion of each batch of fuet was subjected to high-pressure processing (HPP; 600 MPa for 3 min) before chubs were vacuum packaged and stored for 30 days at 20 ± 2°C. The results revealed that pathogen numbers remained relatively unchanged after fermentation (≤0.35 log CFU/g reduction), whereas reductions of ca. 0.8 to 3.2 log CFU/g were achieved after drying fuet to aw 0.89 or 0.86. Regardless of whether fuet was or was not pressure treated, additional reductions of ca. 2.2 to ≥5.3 log CFU/g after drying were achieved following 30 days of storage at 20°C. For non-HPP-treated fuet dried to aw 0.89 and stored for 30 days at 20°C, total reductions of ≥5.3 log CFU/g in levels of STEC or Salmonella spp. were achieved, whereas levels of L. monocytogenes were reduced by ca. 3.6 log CFU/g. Total reductions of ≥5.3 log CFU/g in levels of all three pathogens were achieved after drying non-HPP-treated fuet to aw 0.86. For fuet dried to aw 0.89 or 0.86, that were pressure treated and then stored for 30 days at 20°C, total reductions of >6.2 log CFU/g in levels of all three pathogens were achieved. In conclusion, the processing parameters tested herein, with or without application of HPP, validated that reductions of ≥2.0 or ≥5.0 log CFU/g in levels of STEC, Salmonella spp., and L. monocytogenes were achieved during preparation and storage of fuet.


Subject(s)
Listeria monocytogenes , Pork Meat , Red Meat , Shiga-Toxigenic Escherichia coli , Animals , Food Microbiology , Food Preservation/methods , Salmonella , Swine
5.
J Food Prot ; 84(2): 220-232, 2021 Feb 01.
Article in English | MEDLINE | ID: mdl-32977344

ABSTRACT

ABSTRACT: A total of 482 veal cutlet, 555 ground veal, and 540 ground beef samples were purchased from retail establishments in the mid-Atlantic region of the United States over a noncontiguous 2-year period between 2014 and 2017. Samples (325 g each) were individually enriched and screened via real-time PCR for all seven regulated serogroups of Shiga toxin-producing Escherichia coli (STEC). Presumptive STEC-positive samples were subjected to serogroup-specific immunomagnetic separation and plated onto selective media. Up to five isolates typical for STEC from each sample were analyzed via multiplex PCR for both the virulence genes (i.e., eae, stx1 and/or stx2, and ehxA) and serogroup-specific gene(s) for the seven regulated STEC serogroups. The recovery rates of non-O157 STEC from veal cutlets (3.94%, 19 of 482 samples) and ground veal (7.03%, 39 of 555 samples) were significantly higher (P < 0.05) than that from ground beef (0.93%, 5 of 540 samples). In contrast, only a single isolate of STEC O157:H7 was recovered; this isolate originated from 1 (0.18%) of 555 samples of ground veal. Recovery rates for STEC were not associated with state, season, packaging type, or store type (P > 0.05) but were associated with brand and fat content (P < 0.05). Pulsed-field subtyping of the 270 viable and confirmed STEC isolates from the 64 total samples testing positive revealed 78 pulsotypes (50 to 80% similarity) belonging to 39 pulsogroups, with ≥90% similarity among pulsotypes within pulsogroups. Multiple isolates from 43 (67.7%) of 64 samples testing positive had an indistinguishable pulsotype. STEC serotypes O26 and O103 were the most prevalent serogroups in beef and veal, respectively. These findings support related findings from regulatory sampling studies over the past decade and confirm that recovery rates for the regulated STEC serogroups are higher for raw veal than for raw beef samples, as was observed in the present study of meat purchased at food retailers in the mid-Atlantic region of the United States.


Subject(s)
Escherichia coli Proteins , Red Meat , Shiga-Toxigenic Escherichia coli , Animals , Cattle , Escherichia coli Proteins/genetics , Meat , Mid-Atlantic Region , Serogroup , United States
6.
J Food Prot ; 83(5): 865-873, 2020 May 01.
Article in English | MEDLINE | ID: mdl-32027738

ABSTRACT

ABSTRACT: We evaluated high pressure processing to lower levels of Shiga toxin-producing Escherichia coli (STEC) and Listeria monocytogenes inoculated into samples of plant or beef burgers. Multistrain cocktails of STEC and L. monocytogenes were separately inoculated (∼7.0 log CFU/g) into plant burgers or ground beef. Refrigerated (i.e., 4°C) or frozen (i.e., -20°C) samples (25 g each) were subsequently exposed to 350 MPa for up to 9 or 18 min or 600 MPa for up to 4.5 or 12 min. When refrigerated plant or beef burger samples were treated at 350 MPa for up to 9 min, levels of STEC were reduced by ca. 0.7 to 1.3 log CFU/g. However, when refrigerated plant or beef burger samples were treated at 350 MPa for up to 9 min, levels of L. monocytogenes remained relatively unchanged (ca. ≤0.3-log CFU/g decrease) in plant burger samples but were reduced by ca. 0.3 to 2.0 log CFU/g in ground beef. When refrigerated plant or beef burger samples were treated at 600 MPa for up to 4.5 min, levels of STEC and L. monocytogenes were reduced by ca. 0.7 to 4.1 and ca. 0.3 to 5.6 log CFU/g, respectively. Similarly, when frozen plant and beef burger samples were treated at 350 MPa up to 18 min, reductions of ca. 1.7 to 3.6 and ca. 0.6 to 3.6 log CFU/g in STEC and L. monocytogenes numbers, respectively, were observed. Exposure of frozen plant or beef burger samples to 600 MPa for up to 12 min resulted in reductions of ca. 2.4 to 4.4 and ca. 1.8 to 3.4 log CFU/g in levels of STEC and L. monocytogenes, respectively. Via empirical observation, pressurization did not adversely affect the color of plant burger samples, whereas appreciable changes in color were observed in pressurized ground beef. These data confirm that time and pressure levels already validated for control of STEC and L. monocytogenes in ground beef will likely be equally effective toward these same pathogens in plant burgers without causing untoward effects on product color.


Subject(s)
Food Handling/methods , Food Microbiology , Listeria monocytogenes , Meat Products/microbiology , Shiga-Toxigenic Escherichia coli , Colony Count, Microbial , Food Safety , Humans , Listeria monocytogenes/growth & development , Shiga-Toxigenic Escherichia coli/growth & development
7.
J Food Prot ; 83(3): 434-442, 2020 Mar 01.
Article in English | MEDLINE | ID: mdl-32053832

ABSTRACT

ABSTRACT: The viability of Shiga toxin-producing Escherichia coli (STEC), Salmonella, and Listeria monocytogenes within plant- and beef-based burgers was monitored during storage and cooking. When inoculated (ca. 3.5 log CFU/g) into 15-g portions of plant- or beef-based burgers, levels of STEC and Salmonella decreased slightly (≤0.5-log decrease) in both types of burgers when stored at 4°C, but increased ca. 2.4 and 0.8 log CFU/g, respectively, in plant-based burgers but not beef-based burgers (≤1.2-log decrease), after 21 days at 10°C. For L. monocytogenes, levels increased by ca. 1.3 and 2.6 log CFU/g in plant burgers after 21 days at 4 and 10°C, respectively, whereas pathogen levels decreased slightly (≤0.9-log decrease) in beef burgers during storage at 4 and 10°C. Regarding cooking, burgers (ca. 114 g each) were inoculated with ca. 7.0 log CFU/g STEC, Salmonella, or L. monocytogenes and cooked in a sauté pan. Cooking plant- or beef-based burgers to 62.8°C (145°F), 68.3°C (155°F), or 73.9°C (165°F) delivered reductions ranging from ca. 4.7 to 6.8 log CFU/g for STEC, ca. 4.4 to 7.0 log CFU/g for L. monocytogenes, and ca. 3.5 to 6.7 log CFU/g for Salmonella. In summary, the observation that levels of all three pathogens increased by ca. 1.0 to ca. 2.5 log CFU/g in plant-based burgers when stored at an abusive temperature (10°C) highlights the importance of proper storage (4°C) to lessen risk. However, because all three pathogens responded similarly to heat in plant-based as in beef-based burgers, well-established cooking parameters required to eliminate STEC, Salmonella, or L. monocytogenes from ground beef should be as effective for controlling cells of these same pathogens in a burger made with plant-sourced protein.


Subject(s)
Food Handling/methods , Food Microbiology , Listeria monocytogenes , Salmonella , Shiga-Toxigenic Escherichia coli , Animals , Cattle , Colony Count, Microbial , Listeria monocytogenes/growth & development , Meat Products/microbiology , Salmonella/growth & development , Shiga-Toxigenic Escherichia coli/growth & development
8.
J Food Prot ; 82(11): 1844-1850, 2019 Nov.
Article in English | MEDLINE | ID: mdl-31599649

ABSTRACT

A total of 514 raw pork samples (395 ground or nonintact and 119 intact samples) were purchased at retail stores in Pennsylvania, Delaware, and New Jersey between July and December 2017. All raw pork samples were screened for serogroup O26, O45, O103, O111, O121, O145, or O157:H7 cells of Shiga toxin-producing Escherichia coli (STEC-7) using standard microbiological and molecular methods. In short, 21 (5.3%) of the 395 ground or nonintact pork samples and 3 (3.4%) of the 119 intact pork samples tested positive via the BAX system real-time PCR assay for the stx and eae virulence genes and for the somatic O antigens for at least one of the STEC-7 serogroups. However, none of these 24 presumptive-positive pork samples subsequently yielded a viable isolate of STEC displaying a STEC-7 serogroup-specific surface antigen in combination with the stx and eae genes. These data suggest that cells of STEC serogroups O26, O45, O103, O111, O121, O145, or O157:H7 are not common in retail raw pork samples in the mid-Atlantic region of the United States.


Subject(s)
Food Microbiology , Pork Meat , Serogroup , Shiga-Toxigenic Escherichia coli , Animals , Mid-Atlantic Region , Pork Meat/microbiology , Shiga-Toxigenic Escherichia coli/classification , Shiga-Toxigenic Escherichia coli/isolation & purification
9.
J Food Prot ; 82(7): 1249-1264, 2019 Jul.
Article in English | MEDLINE | ID: mdl-31237790

ABSTRACT

Meat bars are dried snacks containing a mixture of meat, berries, and nuts. To explore consumer awareness of meat bars, we conducted two online, nationally representative surveys and established that 70.8% (743 of 1,050) of U.S. citizens were unfamiliar with this product. When asked to check all answers that applied, most of the 545 respondents (who were recruited based on their familiarity with meat bars) preferred beef (n = 385) as the protein source, followed by chicken (n = 293), pork (n = 183), and turkey (n = 179). Most meat bars were purchased from grocery stores (n = 447), followed by online orders (n = 130) and outdoor stores (n = 120). When asked specifically whether they made their own meat bars, 17.8% of respondents (97 of 545) replied "yes," the majority (52 of 97, 54%) of which obtained recipes online. Some 69.1% (67 of 97) measured the internal temperature of the meat during dehydration, but only 10.3% (10 of 97) confirmed the internal temperature by using a thermometer. Given the paucity of information available on the fate of pathogenic or spoilage bacteria associated with meat bars, as another component of this study, batter was prepared with or without encapsulated citric acid (ECA; 0.74%) added to a formulation of ground beef (65%; 90% lean, 10% fat), chopped pecans (15%), golden flaxseed flour (9.7%), chopped cranberries (5.0%), chopped sunflower seeds (3.1%), sea salt (1.1%), black pepper (0.8%), and celery powder (0.35%). Batter was inoculated (ca. 6.5 log CFU/g) with Shiga toxin-producing Escherichia coli (STEC), portioned by hand (40 ± 0.1 g each), and then dried in a commercial dehydrator. Regardless of the drying treatment, inclusion of ECA in the batter resulted in a pH decrease from ca. 5.5 to ca. 4.7 to 5.0 in the finished product. Without ECA, when meat bars were dried at 62.8°C for 6 h, 71.1°C for 4 h, or 62.8°C for 2 h and then 71.1°C for 2 h, levels of STEC decreased by ca. 6.2, 6.3, or 5.2 log CFU/g, respectively. With ECA, STEC decreased by ca. 6.0, 6.6, or 6.0 log CFU/g in meat bars dried at 62.8°C for 6 h, 71.1°C for 4 h, or 62.8°C for 2 h and then 71.1°C for 2 h, respectively. Our results confirmed that a ≥5.0-log reduction in STEC could be achieved in meat bars formulated with or without ECA under all dehydration conditions tested.


Subject(s)
Food Handling , Food Microbiology , Food, Preserved , Meat , Microbial Viability , Shiga-Toxigenic Escherichia coli , Surveys and Questionnaires , Animals , Cattle , Colony Count, Microbial , Food Handling/statistics & numerical data , Food Microbiology/statistics & numerical data , Food, Preserved/microbiology , Meat/microbiology , Shiga-Toxigenic Escherichia coli/physiology
10.
J Food Prot ; 82(6): 980-987, 2019 Jun.
Article in English | MEDLINE | ID: mdl-31121105

ABSTRACT

HIGHLIGHTS: Cooking may reduce the potential risk of salmonellosis associated with liver pâté. A 5-log reduction was achieved when inoculated pâté was cooked to an internal temperature of ≥73.8°C. A 5-log reduction was achieved when pâté was made with inoculated liver fried for >8 min at 140°C. Findings of this study may be useful for establishing cooking guidelines for liver and pâté.


Subject(s)
Chickens , Food Microbiology , Hot Temperature , Liver , Microbial Viability , Salmonella , Animals , Colony Count, Microbial , Food Microbiology/methods , Liver/microbiology , Salmonella/physiology
11.
J Food Prot ; 82(5): 834-843, 2019 May.
Article in English | MEDLINE | ID: mdl-31009249

ABSTRACT

We surveyed chicken livers from various sources for the presence and levels of Salmonella. The pathogen was recovered from 148 (59.4%) of 249 chicken livers purchased at retail stores in Delaware, New Jersey, and Pennsylvania over about a 9-month period. Positive samples harbored Salmonella at levels of 6.4 most probable number (MPN)/g to 2.4 log CFU/g. The percentage of Salmonella-positive livers purchased at retail outlets in New Jersey (72%, 59 of 82 livers) was significantly higher (P < 0.05) than the percentage for livers purchased in Delaware (48%, 36 of 75 livers); however, this percentage was not significantly different (P > 0.05) from that for livers purchased in Pennsylvania (57.6%, 53 of 92 livers). The pathogen was also recovered more often (P = 0.019) from livers that were packaged by retailers (81 of 121 livers, 66.9%) than from livers packaged directly by processors (67 of 128 livers, 52.3%). In related studies, 12 (5.8%) of 207 chicken livers harvested from birds on a research farm tested positive for Salmonella at levels of 0.4 to 2.2 MPN/g. The recovery rate of Salmonella was 4.4% (6 of 135 livers) from livers with the gall bladder attached and 8.3% (6 of 72 livers) from livers when the gall bladder was removed at harvest on the research farm. We also quantified the levels of a nine-strain cocktail (ca. 6.5 log CFU/g) of Salmonella strains inoculated externally onto or internally into livers both before and after extended cold storage. Storage for at least 2 days at 4°C or 15 days at -20°C resulted in a decrease of about 1.0 log CFU/g in pathogen levels. Given the relatively high recovery rate (ca. 6.0 to 60.0%) and high (possibly illness causing) levels (0.4 MPN/g to 2.4 CFU/g) of Salmonella associated with chicken livers in the present study, further interventions for processors are needed to lower the prevalence and levels of this pathogen on poultry liver.


Subject(s)
Chickens , Colony Count, Microbial , Food Microbiology , Liver , Salmonella , Animals , Food Microbiology/statistics & numerical data , Liver/microbiology , Prevalence , Salmonella/isolation & purification , Salmonella/physiology
12.
Ital J Food Saf ; 7(2): 7250, 2018 07 03.
Article in English | MEDLINE | ID: mdl-30046561

ABSTRACT

Coarse ground meat was mixed with non-meat ingredients and starter culture (Pediococcus acidilactici) and then inoculated with an 8-strain cocktail of Shiga toxin-producing Escherichia coli (ca. 7.0 log CFU/g). Batter was fine ground, stuffed into fibrous casings, and fermented at 35.6°C and ca. 85% RH to a final target pH of ca. pH 4.6 or ca. pH 5.0. After fermentation, the pepperoni-like sausage were heated to target internal temperatures of 37.8°, 43.3°, 48.9°, and 54.4°C and held for 0.5 to 12.5 h. Regardless of the heating temperature, the endpoint pH in products fermented to a target pH of pH 4.6 and pH 5.0 was pH 4.56±0.13 (range of pH 4.20 to pH 4.86) and pH 4.96±0.12 (range of pH 4.70 to pH 5.21), respectively. Fermentation alone delivered ca. a 0.3- to 1.2-log CFU/g reduction in pathogen numbers. Fermentation to ca. pH 4.6 or ca. pH 5.0 followed by post-fermentation heating to 37.8° to 54.4°C and holding for 0.5 to 12.5 h generated total reductions of ca. 2.0 to 6.7 log CFU/g.

13.
J Food Prot ; 81(5): 769-775, 2018 05.
Article in English | MEDLINE | ID: mdl-29624106

ABSTRACT

All-pork mortadella, an Italian-style deli meat, was produced by a local artisanal meat producer with or without 1.0 or 1.5% liquid buffered vinegar (LBV), 0.4, 0.6, or 1.0% dry buffered vinegar (DBV), or a 2.5% blend of potassium lactate and sodium diacetate (KLac). In each of three trials, mortadella was sliced (ca. 1.5 cm thick, ca. 30 g) and surface inoculated with 250 µL per side of a five-strain mixture of Listeria monocytogenes (ca. 3.8 log CFU per slice). The packages were vacuum sealed and then stored at 4 or 12°C. In the absence of antimicrobials, L. monocytogenes levels increased by ca. 2.6 and 6.0 log CFU per slice after up to 120 or 28 days at 4 or 12°C, respectively. With inclusion of 1.0 or 1.5% LBV, 1.0% DBV, or 2.5% KLac as ingredients, pathogen levels decreased by ca. 0.3 to 0.7 log CFU per slice after 120 days at 4°C, whereas with inclusion of 0.4 or 0.6% DBV, L. monocytogenes levels increased by ca. 1.2 and 0.8 log CFU per slice, respectively. After 28 days at 12°C, inclusion of 2.5% KLac, 1.0 or 1.5% LBV, or 0.4 or 0.6% DBV resulted in a ca. 1.4- to 5.7-log increase in L. monocytogenes levels. When 1.0% DBV was included in the formulation, pathogen levels remained unchanged after 28 days at 12°C. However, product quality was lessened at this abusive storage temperature (12°C) for all treatments by the end of storage. Thus, inclusion of LBV or DBV, as clean-label ingredients, in mortadella is equally effective as KLac for controlling L. monocytogenes during storage at 4°C without adversely affecting product quality.


Subject(s)
Anti-Infective Agents , Food Storage/instrumentation , Listeria monocytogenes , Meat Products , Anti-Infective Agents/pharmacology , Colony Count, Microbial , Food Preservation , Lactates , Listeria monocytogenes/drug effects , Listeria monocytogenes/growth & development , Meat Products/microbiology , Temperature
14.
J Food Prot ; 80(8): 1393-1400, 2017 08.
Article in English | MEDLINE | ID: mdl-28726488

ABSTRACT

The efficacy of an electrostatic spraying system (ESS) and/or the sprayed lethality in container (SLIC) method to deliver antimicrobial agents onto the surface of beef subprimals to reduce levels of Shiga toxin-producing Escherichia coli (STEC) was evaluated. Beef subprimals were surface inoculated (lean side; ca. 5.8 log CFU per subprimal) with 2 mL of an eight-strain cocktail comprising single strains of rifampin-resistant (100 µg/mL) STEC (O26:H11, O45:H2, O103:H2, O104:H4, O111:H-, O121:H19, O145:NM, and O157:H7). Next, inoculated subprimals were surface treated with lauric arginate (LAE; 1%), peroxyacetic acid (PAA; 0.025%), or cetylpyridinium chloride (CPC; 0.4%) by passing each subprimal, with the inoculated lean side facing upward, through an ESS cabinet or via SLIC. Subprimals were then vacuum packaged and stored at 4°C. One set of subprimals was sampled after an additional 2 h, 3 days, or 7 days of refrigerated storage, whereas another set was retreated via SLIC after 3 days of storage with a different one of the three antimicrobial agents (e.g., a subprimal treated with LAE on day 0 was then treated with PAA or CPE on day 3). Retreated subprimals were sampled after 2 h or 4 days of additional storage at 4°C. A single initial application of LAE, PAA, or CPC via ESS or SLIC resulted in STEC reductions of ca. 0.3 to 1.3 log CFU per subprimal after 7 days of storage. However, when subprimals were initially treated with LAE, PAA, or CPC via ESS or SLIC and then separately retreated with a different one of these antimicrobial agents via SLIC on day 3, additional STEC reductions of 0.4 to 1.0 log CFU per subprimal were observed after an additional 4 days of storage. Application of LAE, PAA, or CPC, either alone or in combination, via ESS or SLIC is effective for reducing low levels (ca. 0.3 to 1.6 log CFU) of STEC that may be naturally present on the surface of beef subprimals.


Subject(s)
Anti-Infective Agents/pharmacology , Food Handling/methods , Shiga-Toxigenic Escherichia coli/drug effects , Animals , Anti-Infective Agents/administration & dosage , Cattle , Colony Count, Microbial , Escherichia coli O157 , Food Microbiology , Food Safety , Meat , Red Meat , Shiga-Toxigenic Escherichia coli/growth & development
15.
J Food Prot ; 79(5): 723-31, 2016 05.
Article in English | MEDLINE | ID: mdl-27296418

ABSTRACT

We investigated the effects of deep-frying or oven cooking on inactivation of Shiga toxin-producing cells of Escherichia coli (STEC) in meatballs. Finely ground veal and/or a finely ground beef-pork-veal mixture were inoculated (ca. 6.5 log CFU/g) with an eight-strain, genetically marked cocktail of rifampin-resistant STEC strains (STEC-8; O111:H, O45:H2, O103:H2, O104:H4, O121:H19, O145:NM, O26:H11, and O157:H7). Inoculated meat was mixed with liquid whole eggs and seasoned bread crumbs, shaped by hand into 40-g balls, and stored at -20°C (i.e., frozen) or at 4°C (i.e., fresh) for up to 18 h. Meatballs were deep-fried (canola oil) or baked (convection oven) for up to 9 or 20 min at 176.7°C (350°F), respectively. Cooked and uncooked samples were homogenized and plated onto sorbitol MacConkey agar with rifampin (100 µg/ml) followed by incubation of plates at 37°C for ca. 24 h. Up to four trials and three replications for each treatment for each trial were conducted. Deep-frying fresh meatballs for up to 5.5 min or frozen meatballs for up to 9.0 min resulted in reductions of STEC-8 ranging from ca. 0.7 to ≥6.1 log CFU/g. Likewise, reductions of ca. 0.7 to ≥6.1 log CFU/g were observed for frozen and fresh meatballs that were oven cooked for 7.5 to 20 min. This work provides new information on the effect of prior storage temperature (refrigerated or frozen), as well as subsequent cooking via deep-frying or baking, on inactivation of STEC-8 in meatballs prepared with beef, pork, and/or veal. These results will help establish guidelines and best practices for cooking raw meatballs at both food service establishments and in the home.


Subject(s)
Shiga Toxin , Shiga-Toxigenic Escherichia coli , Animals , Colony Count, Microbial , Cooking , Escherichia coli O157 , Food Handling , Food Microbiology , Humans , Meat , Red Meat , Swine
16.
J Food Prot ; 78(5): 1013-7, 2015 May.
Article in English | MEDLINE | ID: mdl-25951399

ABSTRACT

Thermal inactivation of Shiga toxin-producing Escherichia coli (STEC) cells within knitted/cubed beef steaks following cooking on a nonstick griddle was quantified. Both faces of each beef cutlet (ca. 64 g; ca. 8.5 cm length by 10.5 cm width by 0.75 cm height) were surface inoculated (ca. 6.6 log CFU/g) with 250 µl of a rifampin-resistant cocktail composed of single strains from each of eight target serogroups of STEC: O26:H11, O45:H2, O103:H2, O104:H4, O111:H(2), O121:H19, O145:NM, and O157:H7. Next, inoculated steaks were (i) passed once through a mechanical tenderizer and then passed one additional time through the tenderizer perpendicular to the orientation of the first pass (single cubed steak; SCS) or (ii) passed once through a mechanical tenderizer, and then two tenderized cutlets were knitted together by passage concomitantly through the tenderizer two additional times perpendicular to the orientation of the previous pass (double cubed steak; DCS). SCS and DCS were individually cooked for up to 3.5 min per side in 30 ml of extra virgin olive oil heated to 191.5°C (376.7°F) on a hard-anodized aluminum nonstick griddle using a flat-surface electric ceramic hot plate. Regardless of steak preparation (i.e., single versus double cubed steaks), as expected, the longer the cooking time, the higher the final internal temperature, and the greater the inactivation of STEC cells within cubed steaks. The average final internal temperatures of SCS cooked for up 2.5 min and DCS cooked for up to 3.5 min ranged from 59.8 to 94.7°C and 40.3 to 82.2°C, respectively. Cooking SCS and DCS on an aluminum griddle set at ca. 191.5°C for 0.5 to 2.5 min and 1.0 to 3.5 min per side, respectively, resulted in total reductions in pathogen levels of ca. 1.0 to ≥6.8 log CFU/g. These data validated that cooking SCS (ca. 0.6 cm thick) or DCS (ca. 1.3 cm thick) on a nonstick aluminum griddle heated at 191.5°C for at least 1.25 and 3.0 min per side, respectively, was sufficient to achieve a 5.0log reduction in the levels of the single strains from each of the eight target STEC serogroups tested.


Subject(s)
Food Contamination/analysis , Red Meat/microbiology , Shiga-Toxigenic Escherichia coli/isolation & purification , Animals , Cattle , Colony Count, Microbial , Cooking/methods , Food Handling/methods , Food Microbiology , Hot Temperature
SELECTION OF CITATIONS
SEARCH DETAIL
...